If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-20y+100y=0
We add all the numbers together, and all the variables
y^2+80y=0
a = 1; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·1·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*1}=\frac{-160}{2} =-80 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*1}=\frac{0}{2} =0 $
| 6z+11=-19 | | 36-5w=w | | -.5(2x+6)-4=1.6+x+.4 | | 0.9(x+9=-0.1(x-10) | | 8(p-3)-4=2p+50 | | |4s-5|=|s-6| | | 3x-1=2+x | | 3(9-2b)=300 | | 6x^+x=0 | | S2+10s=2000 | | -3x=2x+3 | | 2(5t+2)=44 | | q-17=24 | | 4(2w+3)=4(w+2) | | (2n+10)(2n-4)=228 | | 4v-6+2v=v-7 | | 6(f-7)=6 | | 396/(x-10)=-22 | | x-(0.2x)=8.00 | | x^2=1152 | | 7x-(3x-5)=14 | | 4=x5 | | x+(3x)=10 | | 0.99^x=0.5 | | 6x+5=120 | | x-(0.2x)=2.50 | | 3r+2/4=5 | | 3r+2*4=5 | | b-4^6=b^2 | | 8y-13=-6+y | | 7/4h=35 | | 6(x+4)=9(x+3) |